

AVR32113: Configuration and Use of the
Memory Management Unit

Features
• Translation lookaside buffers (TLB)
• Protected memory spaces
• Variable page size
• Uses exceptions for fast and easy management of TLB entries

1 Introduction
Utilizing a memory management unit (MMU) in an application gives the benefit of
virtual memory, where different memory pages can point to different physical
memory. Virtual memory allows multiple processes to run with address protection
and flexible memory mapping. All memory pages are configured individually with
respect to size, access privileges and mapping.

The AVR®32 MMU hardware has the assignment of converting the virtual
addresses requested by the CPU to physical addresses. The MMU also raises
exceptions if invalid addresses are accessed or if the running process doesn’t have
access to the memory page.

The MMU is also used to protect processes from each other, typically by operating
systems. A process trying to access the memory segment of another process will
be denied by the MMU in the AVR32 device and the CPU is informed by
exceptions.

To speed up the process of converting from virtual to physical, the AVR32 MMU
uses translation buffers, TLB. Depending on the device, it can have separate TLB
for instructions and data or a unified TLB for both instructions and data.

The AVR32 MMU is fully configurable from software, giving it great amount of
flexibility. There are special registers to ease the implementation of the memory
management, making it easy to implement and with high performance.

Figure 1-1. MMU translating virtual addresses to physical addresses

MMU

TLB entries

7 kB - 8 kB
6 kB - 7 kB
5 kB - 6 kB
4 kB - 5 kB
3 kB - 4 kB
2 kB - 3 kB
1 kB - 2 kB
0 kB - 1 kB

3 kB - 4 kB
2 kB - 3 kB
1 kB - 2 kB
0 kB - 1 kB

Virtual memory
space

Physical memory
space

32-bit
Microcontrollers

Application Note

Rev. 32047A-AVR32-09/06

2 AVR32113
32047A-AVR32-09/06

2 Background
The AVR32 memory management unit (MMU) provides a highly flexible and
configurable memory management solution. The MMU is fully configurable by the
user, which allows advanced use for operating systems or simpler use for native
applications.

The AVR32 has a powerful MMU, which allows efficient implementation of virtual
memory and large memory spaces. The highly flexible MMU in the AVR32 has the
features to implement basic or more advanced operating system memory mapping.

MMU is the hardware component that manages a systems virtual memory. The MMU
includes a small amount of memory that manages the connection between virtual and
physical addresses. This table is called the translation lookaside buffer, TLB. When a
request for data is sent to the CPU, the MMU translates the requested address into
the physical address. The TLB is used to speed up performance by enabling caching
on often-used memory locations.

The MMU provides page size from 1 kB to 1 MB with a huge range of individual
settings for each page. This application note addresses the basic functionality for the
MMU provided with the AVR32 architecture.

2.1 MMU registers
For more details about the registers and bit-fields see the AVR32 Architecture
Manual.

2.1.1 TLBEHI register

VPN V I ASID

TLBEHI
register31 08910

The translation buffer entry register high part (TLBEHI) is used for storing the virtual
part of the page entry into the TLB with the possibility to connect the page to an a
application space identifier (ASID).

• VPN – Virtual page number for the page entry.
• V – Valid page entry tells if an entry is valid.
• I – Instruction page entry, ignored on devices without ITLB (see section 04.1)
• ASID – Application space identifier can be used by the operating system when the

MMU is in private memory mode.

2.1.2 TLBELO register

PFN C G B AP SZ D W

TLBELO
register31 10 9 8 7 4 2 1 0

The translation buffer entry low part register (TLBELO) is used for storing the physical
part of the page entry into the TLB, along with the page configuration.

• PFN – Physical frame number, the address the virtual frame number is mapped.
• C – Cachable bit, enables caching if supported by device.

 AVR32113

 3

32047A-AVR32-09/06

• G – Global bit, enables global address search.
• B – Bufferable bit, enables buffering if supported by device.
• AP – Access permissions bits controls read, write and execute access to an entry.
• SZ – Page size bits sets the page size.
• D – Dirty bit is set when the page is written to.
• W – Write through bit enables write through cache if supported by device.

2.1.3 PTBR register

PTBR

PTBR register
31 0

The page table base address register (PTBR) can be used by software to hold the
memory address in where the page table is stored.

2.1.4 TLBEAR register

TLBEAR

TLBEAR
register31 0

The translation buffer exception address register (TLBEAR) contains the most resent
virtual address of a MMU related exception.

2.1.5 MMUCR register

-- S N I M EDLADRPILAIRP

MMUCR
register31 5 4 3 2 1 026 20 14 8

The memory management unit control register (MMUCR) controls the use of the
MMU.

• IRP – instruction replacement pointer, which instruction TLB entry to access.
• ILA – instruction lockdown amount, number of instruction TLBs to lock.
• DRP – data replacement pointer, which data TLB entry to access.
• DLA – data lockdown amount, number of data TLBs to lock.
• S – Segmentation bit enables segmentation.
• N – Not found bit, i.e. page miss when using the tlbs instruction.
• I – Invalidate bit invalidates all entries in the TLB.
• M – Mode bit selects between shared and private mode.
• E – Enable bit enables paging.

2.1.6 TLBARLO/TLBARHI registers

TLBARLO / TLBARHI

TLBARLO / TLBARHI
register31 0

The translation buffer accessed high and low register contains which TLB entries that
have been accessed since the last reset of this register. The two 32 bit registers give

4 AVR32113
32047A-AVR32-09/06

a total of 64 bits that represents the TLB entries. Instruction and data TLB is
separated by the I-bit in the TLBEHI register (se section 1H1H2.1.1).

2.2 Virtual memory space
The AVR32 architecture uses a 32-bit virtual memory space. The mapping and
translation from virtual to physical addresses is done by the MMU.

Figure 2-1. Virtual memory space

512 MB system space
non-cachable

512 MB translated space
cachable

512 MB non-translated space
non-cachable

512 MB non-translated space
cachable

2 GB translated space
cachable

Unaccessible space
Access error

2 GB translated space
cachable

0xFFFFffff

0xE0000000

0xC0000000

0xA0000000

0x80000000

0x00000000 0x00000000

0x80000000

0xFFFFffff

Privileged mode Unprivileged mode

P4

U
0

P0

P1

P2

P3

1. The AVR32 use two distinct modes, privileged mode and unprivileged mode. The difference

between these modes is covered in the AVR32 Architecture Manual. This application note
will assume the privileged mode is used (i.e. the CPU in supervisor mode).

2.3 MMU configuration
The AVR32 can use both segmentation and page translation. As these two can be
configured independently of each other, there are four different modes of operation as
described in 2H2HTable 2-1.

The segmentation is enabled by the S-bit in MMUCR, and page translation is enabled
by the E-bit in MMUCR. Segmentation is enabled by default, and page translation is
disabled after a reset.

 AVR32113

 5

32047A-AVR32-09/06

Table 2-1. Modes of operation
Segment
translation

Page
translation Description

Off Off Virtual and physical addresses are equal.

On Off

The P0, P4 and U0 have no translation while P1, P2 and P3
are mapped to the physical location 0x00000000 to
0x1F000000.

Off On All addresses are mapped according to TLB entries (
3H3H

1).

On On

P1 and P2 are mapped directly to the physical address range
0x00000000 to 0x1F000000, while P4 is mapped directly to the
corresponding physical address. U0, P0 and P3 are mapped
according to TLB entries (

4H4H

1).

Notes: 1. See section 5H5H4 for descriptions concerning the TLB

3 Enabling the MMU
As the MMU is optional in the AVR32 architecture, only segmentation is enabled by
default. Page translation is enabled with the E-bit in the MMUCR register.

3.1 MMUCR – MMU control register
The MMUCR controls the operation of the MMU, making it possible to enable the
MMU, enable segmentation and select mode as specified in 6H6HTable 2-1.

The control register is also used for replacing and locking entries in the TLB. Four bit-
fields are used for this purpose:

• IRP – Instruction replacement pointer
• ILA – Instruction lockdown pointer
• DRP – Data replacement pointer
• DLA – Data lockdown pointer

Each of these four bit-fields is up to 6 bits, allowing up to 64 valid pages in both the
instruction TLB and data TLB.
The IRP and DRP fields give the index of the page entry to write or read from the
TLB.

The ILA and DLA fields specify the number of entries to be locked down, counting
from the first entry in the respective TLB. Thus, to lock down 10 entries these 10
entries have to be organized at the 10 first entries in the TLB.

3.2 Page table
The AVR32 MMU page table needs to be implemented in software along with an
exception handler swapping entries in and out of the TLB (see section 7H7H4). This is
usually handled by the operating system.

It is recommended that the page table is stored in the format given by the TLBELO
register, making it possible to pass the entries directly into the MMU.

For more information see the AVR32 Architecture Manual.

6 AVR32113
32047A-AVR32-09/06

3.3 Page entries
The AVR32 MMU can be configured to support pages from 1 kB to 1 MB.

Depending on the device specification, each page can be configured to be global,
cacheable or bufferable, and the cache can be set to be write-through or write-back.

The entries have individual access permissions for read, write and execute for both
privileged CPU mode and unprivileged CPU mode. This allows protecting memory
segments from illegal access.

The dirty bit is set by hardware in the entry if it is written to. An exception will rise
when the dirty bit is set, making it possible for the software to handle the dirty page.

For more information see the AVR32 Architecture Manual.

4 Translation lookaside buffer
In order to speed up the translation process, the AVR32 uses a special cache that
contains buffered entries from the page table. This cache is called the translation
lookaside buffer (TLB). One can use one unified TLB or two separate TLB, one for
instructions and one for data. A single TLB can contain up to 64 different entries and
each entry can be individually locked in the TLB to further increase performance.

4.1 TLB types
The TLB entries can be divided into instruction TLB (ITLB) and data TLB (DTLB) or
unified TLB (UTLB). This is indicated in each TLB entry by the I-bit in the TLBEHI
register. The TLB entries are indexed by using the irp- and drp-field in the MMUCR
register.

For devices without ITLB entries the I-bit in TLBEHI is ignored by hardware and all
TLB entries are indexed by the drp-field in the MMUCR register.

4.2 TLB structure
An entry in the TLB is divided into two parts. One part is describing the virtual section
and the other part is describing the physical section. The fields of these two parts are
extensively covered in the AVR32 Architecture Manual. Though the table entries
organization may differ from this document to suit specific implementation needs.

4.3 TLB instructions
Associated with the TLB are three assembly instructions:

• tlbw – write a new entry to the TLB.
• tlbr – read an entry from the TLB.
• tlbs – search the TLB for an entry.

4.3.1 tlbw instruction

A tlbw instruction writes the contents of TLBEHI and TLBELO into the TLB. The drp or
irp fields in the MMUCR register specify the index in the TLB the contents are written
to. If an instruction is to be written, the irp field is used, for data the drp field is used.
Before the tlbw instruction can be executed, the correct values must be set in the
MMUCR registers, as well as TBLEHI and TBLELO. 8H8HFigure 4-1 shows how a tlbw
instruction can be executed.

 AVR32113

 7

32047A-AVR32-09/06

Figure 4-1. Data flow when tlbw instruction executed

TLBEHI

TLBELO

drp DTLB[drp]

MMUCR

0

DTLB
6
3

4.3.2 tlbr instruction

A tlbr instruction reads an entry from the TLB and put the data TLBEHI and TLBELO.
The drp or irp fields in the MMUCR register specify the index to be read in the TLB. If
an instruction is to be read, the irp field is used, for data the drp field is used. Before
the tlbw instruction can be executed, the correct values must be set in the MMUCR
registers, as well as TBLEHI and TBLELO. 9H9HFigure 4-2 shows how a tlbr instruction
can be executed.

Figure 4-2. Data flow when tlbr instruction executed

TLBEHI

TLBELO

drp DTLB[drp]

MMUCR

0

DTLB
6
3

8 AVR32113
32047A-AVR32-09/06

4.3.3 tlbs instruction

A tlbs instruction searches the TLB for an entry matching the contents in TLBEHI and
TLBELO. If the search is successful, the drp field in the MMUCR is updated with the
address to the entry in TLB. If the search was unsuccessful the not found bit (N) in
MMUCR is set. 10H10HFigure 4-3 shows how a tlbs instruction can be executed.

Figure 4-3. Data flow when tlbs instruction executed

TLBEHI

TLBELO

drp
MMUCR

0

DTLB
6
3

N
MMUCR

Search
success?

Yes

No

5 MMU application design considerations

5.1 Program counter (PC) and valid memory spaces
When switching mode on the MMU the program counter (PC) must be in a place
where it can continue executing, if not the MMU will raise an exception. The TLB
entries must be entered before a mode change.

5.2 MMU exceptions
Handling exceptions related to the MMU is mandatory when using the MMU, since
unhandled MMU exceptions will lead to an unresolved state and the processor will
need to be reset.

The exception handler also has to reside inside a valid page entry

5.3 TLB page flags
There are several flags possible to set for each page; they affect the page in different
ways. The most important D-flag and V-flag must be set correct to avoid unexpected
exceptions.

The dirty bit, D flag, must be set to dirty to allow the CPU to write to a memory
address without rising an DTLB modified exception. This flag can also be used by the
operating system to detect dirty pages and flush these to disk.

The valid bit, V flag, must be set if the page is valid. Entering an entry in the TLB
without this bit set will result in a page miss exception when the memory area is
accessed.

 AVR32113

 9

32047A-AVR32-09/06

6 Implementations

6.1 Driver files
The driver consists of two files “mmu.c” and “mmu.h”. Where “mmu.h” declares all
functions and “mmu.c” contains the source code.

6.2 Example application
The example application, mmu_example.c, is using the MMU driver files to show how
the MMU works when segmentation is on and paging off, and when both
segmentation and paging is turned on.

Since the linker scripts supplied with the native GNU C compiler assumes
segmentation is turned on, the example application will only demonstrate the use of
the MMU when segmentation is turned on.

11H11HFigure 6-1 shows the flow of the example application. For detailed explanation of the
functions please see the code documentation (see chapter 12H12H6.3).

10 AVR32113
32047A-AVR32-09/06

Figure 6-1. Example code flow chart

init_usart

SW1 pressed &&
buttonTimer == 0?

SW0 pressed &&
buttonTimer == 0?

buttonTimer =
DELAY_TIMEOUT

buttonTimer =
DELAY_TIMEOUT

--buttonTimer

No

No

Yes

Yes

mmu_reset()

mmu_init()
/* shared mode */

mmu_addTLBEntry()

mmu_init()
/* paging on and

segmentation on*/

mmu_searchVDataPointer()

mmu_searchPDataPointer()

mmu_findIndexDataPointer()

print the results

mmu_init()
/* paging on and

segmentation on*/

mmu_reset()

print the results

buttonTime > 0? No

Yes

SW2 pressed &&
buttonTimer == 0?

buttonTimer =
DELAY_TIMEOUT

No

Yes

mmu_reset()

mmu_init()
/* shared mode */

mmu_addTLBEntry()

mmu_init()
/* paging on and

segmentation on*/

access memory
outside TLB

entries

exception handler

page
miss?

mmu_addTLBEntry()

No

Yes

6.3 Doxygen documentation
All source code is prepared for doxygen automatic documentation generation.
Premade doxygen documentation is also supplied with the source to this application
note, located in src/doxygen/index.html.

Doxygen is a tool for generating documentation from source code by analyzing the
source code and using known keywords. For more details see
http://www.stack.nl/~dimitri/doxygen/.

32047A-AVR32-09/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Background
	2.1 MMU registers
	2.1.1 TLBEHI register
	2.1.2 TLBELO register
	2.1.3 PTBR register
	2.1.4 TLBEAR register
	2.1.5 MMUCR register
	2.1.6 TLBARLO/TLBARHI registers

	2.2 Virtual memory space
	2.3 MMU configuration

	3 Enabling the MMU
	3.1 MMUCR – MMU control register
	3.2 Page table
	3.3 Page entries

	4 Translation lookaside buffer
	4.1 TLB types
	4.2 TLB structure
	4.3 TLB instructions
	4.3.1 tlbw instruction
	4.3.2 tlbr instruction
	4.3.3 tlbs instruction

	5 MMU application design considerations
	5.1 Program counter (PC) and valid memory spaces
	5.2 MMU exceptions
	5.3 TLB page flags

	6 Implementations
	6.1 Driver files
	6.2 Example application
	6.3 Doxygen documentation

